

Diskless Linux Cluster How-To

by Justin L. Shumaker

ARL-TR-3607 September 2005

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5068

ARL-TR-3607 September 2005

Diskless Linux Cluster How-To

Justin L. Shumaker
Survivability/Lethality Analysis Directorate, ARL

Approved for public release; distribution is unlimited.

 ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

September 2005
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

9 October 2004–22 February 2005
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

Diskless Linux Cluster How-To

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

1L162618AH80
5e. TASK NUMBER

6. AUTHOR(S)

Justin L. Shumaker

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: AMSRD-ARL-SL-BE
Aberdeen Proving Ground, MD 21005-5068

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-3607

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Diskless linux clustering is not yet a turn-key solution. The process of configuring a cluster of diskless linux machines
requires many modifications to the stock linux operating system before they can boot cleanly. This guide will help the
experienced linux user to take a set of Pre-eXecution Environment capable machines and configure them appropriately.

15. SUBJECT TERMS

diskless, linux cluster, PXE

16. SECURITY CLASSIFICATION OF:
19a. NAME OF RESPONSIBLE PERSON
Justin L. Shumaker

a. REPORT
UNCLASSIFIED

b. ABSTRACT
UNCLASSIFIED

c. THIS PAGE
UNCLASSIFIED

17. LIMITATION
OF ABSTRACT

UL

18. NUMBER
OF PAGES

 28 19b. TELEPHONE NUMBER (Include area code)

410-278-2834
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

 iii

Contents

1. Introduction 1

2. Configuration 1
2.1 Step 1: TFTP ..1

2.2 Step 2: DHCP ...2

2.3 Step 3: SysLinux ..2

2.4 Step 4: Kernel...3

2.5 Step 5: Ramdisk..4

2.6 Step 6: Slave Filesystems ...6

2.7 Step 7: Configuring RC.SYSINIT..7

2.8 Step 8: Post-Install Notes ...7

2.9 Conclusion...10

Appendix. /etc/rc.d/rc.sysinit 11

Distribution List 20

 iv

INTENTIONALLY LEFT BLANK.

 1

1. Introduction

The following is a guide designed for instructing a skilled administrator on the steps necessary
for configuring a diskless linux cluster. It is assumed that the reader is familiar with TFTP,
DHCP, Pre-eXecution boot Environment (PXE), configuring and compiling kernels, and has
general unix knowledge. Be prepared for some trial and error. During the writing of this report,
I rebooted a diskless node well over 100 times in order to perfect the configuration. With the aid
of this report one should only have to reboot their cluster a few times until the configuration is in
good working order. As an overview, one will begin by configuring a “master” node from where
the “slave” nodes will retrieve their data. First, the process will begin with the configuration of
TFTP and DHCP, which will allow the slaves to get an IP, hostname, kernel, and ramdisk. Next,
a file from the SysLinux UNIX tape archive is used to permit PXE booting. Later, a custom
kernel and ramdisk are created exclusively for the slave nodes for their boot process. Finally, the
slaves are configured to operate in a diskless environment. The Post-Install section provides
insight into some additional useful configurations as well as how a few of the problems that were
encountered along the way were resolved.

There are a number of websites devoted to various methods of configuring a cluster to boot linux
in a diskless fashion. The following is a list of websites found to be useful. They may serve as a
reference to the information provided in this document:

1. http://frank.harvard.edu/~coldwell/diskless/

2. http://www.linuxforum.com/linux-network-boot.php

3. http://www.linuxnetmag.com/en/issue5/m5diskless1.html

2. Configuration

2.1 Step 1: TFTP

Most linux systems come with a /tftpboot/ directory; if there is not one, create one. Make sure
that the service daemon such as xinetd, which is being used to handle services, has the TFTP
service enabled. Redhat 9 has xinetd configuration data under "/etc/xinetd.d/". Edit the "tftp"
file in this directory and change "disable = yes" to "disable = no". At this point the machine
should be capable of handling TFTP connections. If TFTP is not working, consult your TFTP
manual and "tail" your "/var/log/messages" to see if there are any obvious errors.

 2

2.2 Step 2: DHCP

When the diskless nodes boot they will try to connect to the master using their PXE to obtain an
IP and fetch some data. Configuring DHCP will point them to the necessary data, which will be
transferred via TFTP. Make sure that "dhcpd" is installed. DHCP-3 (the default with redhat 9)
was used for this configuration. Edit the file "/etc/dhcpd.conf" and use the following as a
configuration template:

--
ddns-update-style ad-hoc;
subnet 192.168.1.0 netmask 255.255.255.0 {
group {
 use-host-decl-names on;
 filename "pxelinux.0";
 host n1 {
 hardware ethernet 00:02:B3:52:3B:28;
 fixed-address n1.myhost.com;
 }
 host n2 {
 hardware ethernet 00:02:B3:52:3B:1F;
 fixed-address n2.myhost.com;
 }
}
default-lease-time 86400;
max-lease-time 86400;
option routers 192.168.1.254;
option ip-forwarding off;
--

If you have worked with DHCP before, then the previous configuration syntax should be
familiar. If you are unfamiliar with the syntax, then consult the DHCP manual. Adjust the
configuration for your custom network configuration (i.e., subnet, number of nodes, etc). After
editing is complete, be sure to restart the DHCP daemon "dhcpd", i.e., “ps ax | grep dhcp”. If
“dhcpd” is not running, start it and make sure it's using this configuration file (it should be by
default). Once again, check "/var/log/messages" to resolve any problems.

2.3 Step 3: SysLinux

Now that TFTP and DHCP are configured and working properly, the diskless nodes can get an
IP when booted. The next step they will try to perform is obtaining a file called pxelinux.0 from
the DHCP daemon (as indicated by the DHCP configuration file). This file will allow the nodes
to get a kernel and ramdisk image, which will be discussed later. Obtain the latest version of
syslinux from kernel.org at http://www.kernel.org/pub/linux/utils/boot/syslinux/.

 3

The file you want from the tarball is called "pxelinux.0". Create a directory under your
"/tftpboot" directory called "pxelinux.cfg" so you have "/tftpboot/pxelinux.cfg/". Drop the
"pxelinux.0" file from the syslinux package into "/tftpboot/". Edit a new file called "default"
under "/tftpboot/pxelinux.cfg/" and place the following line in it (all one line):

"DEFAULT pxelinux.cfg/bzImage initrd=pxelinux.cfg/initrd.img ip=dhcp
root=/dev/ram0 init=linuxrc rw".

This line instructs the diskless nodes to use a file named "bzImage" as the kernel and that the
initial ramdisk (the file that contains some basic utilities to get the system up and going) will be
called "initrd.img". The line will also tell the nodes that their "ip" is obtained via DHCP, that
they will be using a file called "linuxrc" as the initial boot script, and that the initial ramdisk will
be read/write.

2.4 Step 4: Kernel

Now that the nodes know what their IP is and with what file to bootstrap, they need a kernel to
load and a ramdisk (discussed in the next step). The kernel only needs a few drivers compiled in
statically (not as modules) so that it can get an ethernet device configured and get an NFS
filesystem mounted. If you have never compiled a linux kernel before I recommend reading
some of the Linux Kernel documentation first. First, go to the linux kernel source tree
"/usr/src/linux-2.4/" (on redhat 9) and type "make menuconfig" to get an interactive menu for
configuring the kernel. At this point you basically want to spend some time going through each
menu and turning off unnecessary drivers. For example, our machines do not have PCMCIA
cards so this driver is disabled. Other drivers like firewire, USB, disk support, etc., will more
than likely not be required. The drivers required should be compiled in statically ("*" indicates
static while "m" indicates module), not as a module. The two imperative drivers that need to be
compiled in statically are “NFS client support” and the driver for the ethernet device being used
on the slave for diskless booting. Adding other drivers depends on requirements. Once done
getting the custom kernel entirely configured, exit the menu screen by pushing the [esc] key until
you are asked if you want to save the configuration file, answering [yes]. At a console, type
"make clean && make dep && make -j2 bzImage" and the kernel should begin compiling. If
you encounter errors, consult the Linux Kernel documentation. Once the kernel finishes
compiling, a file called "bzImage" under "/usr/src/linux-2.4/arch/i386/boot/" should be copied to
the "/tftpboot/pxelinux.cfg/" directory. At this point you should have a bootable kernel for the
diskless nodes. You may at some point wish to copy the kernel source onto the diskless nodes
and do the same process, copying the kernel to /boot along with the System.map, creating the
System.map-XXXX symlink (where XXXX is the version, i.e., 2.4.27), and performing the
"make modules" and "make modules_install" to put all the modules in place. Doing so will
allow you to compile new kernels on a cluster node instead of the head.

 4

2.5 Step 5: Ramdisk

At this point, the diskless nodes are almost ready to boot. A ramdisk image needs to be created
in order to provide the diskless nodes with some essential utilities to configure an interface
and get NFS going. Most linux systems have a set of ramdisks under /dev/ram0 /dev/ram1 etc.
that can be used by the user. Make an ext2 filesystem on ram0 with the following command
(redhat 9): "/sbin/mkfs.ext2 /dev/ram0". Make a place to mount the ramdisk under /mnt/ or
wherever you prefer with the following command: "mkdir /mnt/ram0". Now try mounting the
ramdisk with the following command: "mount -t ext2 /dev/ram0 /mnt/ram0". Typing "df -h" in
the console should reveal that that "ram0" has been mounted successfully. Now it's time to start
copying over essential utilities and libraries to this ramdisk. The ramdisk is just a miniature
filesystem with barebone support. Recall when the "/tftpboot/pxelinux.cfg/default" file was
made, we told the diskless nodes to execute a script called "linuxrc", we will begin there. Edit
"/mnt/ram0/linuxrc" file and use the following script as a guide for your own custom linuxrc
script:

--
#!/bin/bash
CONFIGURE INTERFACE
/sbin/ifconfig lo 127.0.0.1
/sbin/ifconfig eth0 0.0.0.0

SET HOSTNAME
/bin/hostname nizzle

PORTMAP AND RPC.STATD FOR NFS
/sbin/portmap
#/sbin/statd

GET IP FROM DHCP
/sbin/dhclient -sf /bin/dhcp-adhoc.sh eth0

#exec /bin/bash

PIVOT AND BOOT
cd /nfs
/sbin/pivot_root . initrd

RUN INIT
exec /usr/sbin/chroot . /sbin/init <dev/console >dev/console 2>&1
--

 5

This script is using “bash” (bourne again shell) to configure an interface, set a hostname, start
portmap for NFS, and run DHCP to obtain an IP address from the DHCP server. Also
commented out is the line "exec /bin/bash" which I recommend uncommenting when you boot
the first time. Doing so will allow you to run "ifconfig" from the ramdisk to make sure
everything is good up to this point and that networking works. All of the utilities in this script
must be on your ramdisk filesystem. Most of these binaries require libraries. One can use the
"ldd" command to find out what libraries you need, i.e., "ldd /bin/bash" outputs the following:

 libtermcap.so.2 => /lib/libtermcap.so.2 (0x40020000)
 libdl.so.2 => /lib/libdl.so.2 (0x40024000)
 libc.so.6 => /lib/libc.so.6 (0x40027000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)
This means that you need these four libraries on your ramdisk under “/lib/” in order for this
binary to run. You must "ldd" all your binaries to ensure that you have all the proper library
dependencies. I recommend putting the basic utilities (bash, cat, df, hostname, kill, ls, mkdir,
mount, ping, ps, ifconfig, chroot, pivot_root, portmap, route, rpc.lockd, statd, dhclient, etc.) on
the disk. The default ramdisk size in redhat 9 is 4MB; use it wisely. In the previous "linuxrc"
script, there is a line "/sbin/dhclient -sf /bin/dhcp-adhoc.sh eth0" which uses DHCP to configure
the interface. I handcrafted a script called dhcp-adhoc.sh to process the DHCP info and apply it
to eth0. Below is my custom dhcp-adhoc.sh script:

--

#!/bin/bash
#echo "-- $reason --"
if [x$reason = xBOUND]; then
 echo "--- configuring interface [$interface] [$new_ip_address] [$new_host_name] ---";
 /sbin/ifconfig $interface $new_ip_address
 /bin/hostname $new_host_name
 echo "--- mounting nfs (/) ---"
 /bin/mount -t nfs $new_dhcp_server_identifier:/cluster/$new_host_name /nfs

 echo "--- mounting nfs (/bin) ---"
 /bin/mount -t nfs $new_dhcp_server_identifier:/cluster/shared/bin /nfs/bin

 echo "--- mounting nfs (/etc) ---"
 /bin/mount -t nfs $new_dhcp_server_identifier:/cluster/shared/etc /nfs/etc

 echo "--- mounting nfs (/etcmaster) ---"
 /bin/mount -t nfs $new_dhcp_server_identifier:/etc /nfs/etcmaster

 echo "--- mounting nfs (/home) ---"
 /bin/mount -t nfs $new_dhcp_server_identifier:/home /nfs/home

 echo "--- mounting nfs (/lib) ---"
 /bin/mount -t nfs $new_dhcp_server_identifier:/cluster/shared/lib /nfs/lib

 echo "--- mounting nfs (/root) ---"
 /bin/mount -t nfs $new_dhcp_server_identifier:/cluster/shared/root /nfs/root

 6

 echo "--- mounting nfs (/sbin) ---"
 /bin/mount -t nfs $new_dhcp_server_identifier:/cluster/shared/sbin /nfs/sbin

 echo "--- mounting nfs (/usr) ---"
 /bin/mount -t nfs $new_dhcp_server_identifier:/cluster/shared/usr /nfs/usr
fi
--

This script will obtain the DHCP info, configure the interface, and mount some NFS points for
the "pivot_root". I made an "nfs" directory on the root filesystem of the ramdisk called "/nfs/".
Under the "/nfs/" directory I stubbed out the basic system directories (bin, sbin, etc, lib, usr ...)
and mounted them via "mount" in this shell script.

Referring back to the linuxrc script, I use the "pivot_root" utility to make the "/nfs/" directory the
root filesystem. Next, “init” is executed followed by the setting of the root directory to ".". The
system should start booting and processing the rc startup scripts. At this point you have a
bootable linux system. Everything after this is a matter of tweaking. When testing a ramdisk, go
to the “/tftpboot/pxelinux.cfg/” directory and type the following “sync && dd if=/dev/ram0
of=initrd.img”. This will sync the ramdisk to save all the changes made and dump them to the
initrd.img file. You can optionally gzip the file if you wish: “gzip initrd.img && mv
initrd.img.gz initrd.img”. At a later time you may want to re-edit your ramdisk. This can by
accomplished by typing “dd if=initrd.img of=/dev/ram0” and then mounting the disk by typing
“mount /dev/ram0 /mnt/ram0”.

2.6 Step 6: Slave Filesystems

This is a good point to start thinking about what you want on the slaves filesystem. Each slave
needs a mostly complete linux filesystem to get some basic services up and running so that there
is a usable filesystem with which to use. It's up to each individual how they want to accomplish
this, but the easiest way to create the slave filesystem is to just copy the root filesystem to an area
on the disk dedicated to the cluster, i.e., "/cluster/shared". Next, take all of the root directories
and move them to the "/cluster/shared" directory so that they could be used in a shared fashion
(i.e., bin, usr, etc, lib, sbin, root) and not "/tmp/" and "/var/" since those are unique to each
individual nodes filesystem. Next, make the directories "/cluster/n1/" thru "/cluster/n8/" (or
however many nodes being used in the configuration) with the aformentioned set of shared
directories just stubbed out: usr, bin, etc, sbin, lib, and root. Looking back on the "dhcp-
adhoc.sh" script, the first thing it does is mount the "/cluster/nX" directory where "X" is the
number of the node. The next set of actions that take place in the script is the mounting of each
of these stubbed out filesystems from the shared directory for the cluster. After all the
aforementioned directories are mounted a basic stubbed out filesystem should exist. Having this
type of architecture means that anyone can log into any of the nodes, install a package, and the
package will be available on each of the nodes as well.

 7

2.7 Step 7: Configuring RC.SYSINIT

Now that the slaves can boot linux via NFS using the custom kernel and ramdisk you created it's
time to tweak the filesystem to cater to a diskless environment. One of the first steps to perform
is the adjusting of the file "/etc/rc.sysinit", such that any unnecessary commands are not executed
during boot. For example, one may not care about USB devices; thus, they should remove the
lines performing the USB commands in this script. Additionally, you should make a symlink
from “/etc/rc.sysinit” to “/etc/rc.d/rc.sysinit” to avoid the confusion of having two separate
versions of these. Anything related to local drive maintenance and so forth should be removed
as well. The jist of this process is to examine all of the [Fail] messages on bootup and find out
why a [Fail] message appears, and then resolve the problem by adjusting or removing the
commands causing the failure. Most [Fail] messages occur because this script is attempting to
either use a utility that requires a module that is not present in the kernel or because the script is
trying to do something to a local disk drive that is not appropriate. Expect to boot the node a few
times in order to get this script configured well. The configuration process depends on the
system, hardware, and environment being used. There is no real turn-key solution for this
process yet. Once this arduous process has been completed, one should be able to boot the nodes
cleanly and get a linux login screen. See the appendix for an example.

2.8 Step 8: Post-Install Notes

While the ramdisk is booting, you may encounter nfs/lockd messages being spammed to the
console because portmap and/or rpc.statd is not running. I have found that you need to download
the source RPM from the redhat 9 source and use that "statd" binary not the "rpc.statd" binary
that comes with the system. The same goes for the rpc.statd binary on each of the nodes
filesystems, use the "statd" binary, not the "rpc.statd" binary that comes with the system. You
could make a symlink from "statd" to "rpc.statd" if you like. Also check your "/etc/hosts.allow"
and try adding the following line to fix things: "portmap : 192.168.1.0/255.255.255.0 : allow".

It is important that each of the nodes have their own "/var/" and "/tmp/" directories since they do
their own accounting in them (assuming you want write access on the filesystems).

If you would like to share password files between the master and the slaves, I made a
"/etcmaster" and mounted that in the ramdisk phase and pointed the slaved "/etc/passwd",
"/etc/shadow", and "/etc/group" to the respective locations on "/etcmaster/". This will allow the
administrator to make a user on the master node, which automatically gets created on the slaves
as well.

You may also wish to stub out an "/etc/mtab" to have a fake entry for your NFS mount so that
when the "df" command is used it reports a live filesystem (although fake). This will allow one
to get an idea of how much space is available via the NFS. An example would be
192.168.1.254:/ / nfs rw,bg,soft,intr,addr=192.168.1.254 0 0.

 8

Having a simple way to login to each of the nodes can be important. I chose to setup "rsh" on
each one of those machines so that anybody but root could log into a node by simply typing "rsh
n1" or the node of choice from the master. This was accomplished by enabling rsh under the
/etc/xinetd.d/rsh file (assuming you installed rsh) and enabling it by changing "disable = yes" to
"disable = no". Do not forget to update the "/etc/hosts.allow" to permit anyone on the subnet to
rsh into the box: "in.rshd : 192.168.1."

Having a method of invoking a command on all the machines is important. Not many people
want to log into each node to start up a process. The following is a shell script* called "crun"
that automates this process:

--

#!/bin/sh
$Id: crun,v 1.2 2004/08/04 13:08:32 erikg Exp $
Erik Greenwald <erikg@arl.army.mil> 3-6255 blah blah
get this from dhcp? or a heartbeat monitor?
hosts="n1 n2 n3 n4 n5 n6 n7 n8"

default parms
verbose="no"
user=`whoami`
background="no"

while [`echo $1 | cut -b 1` = '-']
do
 parm=`echo $1 | cut -b 2`
 shift
 case "$parm" in
 v)
 verbose=yes
 ;;
 l)
 user=$1
 preflag="-l $1"
 shift
 ;;
 b)
 background=yes
 preflag="$preflag -n"
 postflag='>/dev/null 2>/dev/null &'
 ;;
 h)
 echo "Usage:"
 echo " crun [-v] [-b] [-h] -[l user] command"
 echo

*Developed by Erik Greenwald, U.S. Army Research Laboratory.

 9

 echo " -v verbose mode"
 echo " -b background mode"
 echo " -h show this help"
 echo " -l user rsh as user"
 echo
 exit
 ;;
 *)
 echo "Usage:"
 echo " crum [-v] [-b] [-h] [-l user] command"
 echo
 echo "try -h for help"
 echo
 exit -1
 ;;
 esac
done

for host in $hosts
do
 if [$verbose = "yes"]
 then
 echo "rsh $preflag $host \"$* $postflag\"" 1>&2
 fi
 rsh $preflag $host "$* $postflag"
done

exit
--

Invoking the script like this, "crun w", will show you who is logged in on all the boxes, while
"crun -b my.daemon" will start and background a daemon on all the machines.

I wrote a script that uses the “crun” script that is useful for rebooting all the nodes
called "creboot".

--

#!/bin/bash
echo "Rebooting all nodes, please wait... "
crun -b reboot -f
echo "Complete."

--
Because the nodes are not fully equipped to shutdown properly, I force them to reboot without
shutting down entirely. This is due to the way in which redhat 9 has the “rc” scripts configured.
It is up to the administrator and his needs to configure the nodes to shutdown and reboot without
forcing a fast reboot.

 10

It is useful to have a “/etc/hosts” file on the master and on the shared “/etc” of the nodes that
contains the host and IP address of each of the machines in the cluster. Then, facilities like “rsh”
can be used with just the hostname instead of the IP address, i.e., “rsh n1” instead of “rsh
192.168.1.1”.

The following is the modified version of “/etc/rc.sysinit”.

FILESYSTEM TOUR:

The following is series of “ls” outputs to get a better idea of where all these aforementioned
directories are and what's inside of them:

[user@master:/]$ ls
bin cluster dev home initrd lost+found mnt proc sbin tmp var
boot d etc infiniband lib misc opt root tftpboot usr

[user@master:/cluster]$ ls
n1 n2 n3 n4 n5 n6 n7 n8 shared

[user@master:/cluster/shared]$ ls
bin etc lib root sbin usr

[user@master:/tftpboot]$ ls
pxelinux.0 pxelinux.cfg

[user@machine:/tftpboot/pxelinux.cfg]$ ls
bzImage default initrd.img

[user@machine:/cluster/n1]$ ls
bin boot dev etc etcmaster home initrd lib node proc root sbin tmp usr var

2.9 Conclusion

While trying to keep this report short and complete it is difficult to cover every aspect in the
greatest of detail. I recommend using a search engine to seek out answers to issues you may run
into due to differing hardware platforms, linux versions, and requirements in general. The
previous work section contains some useful links that cover other various details and
configuration ideas not mentioned here. Allow for at least a full day to configure the cluster as
this is not a turn-key solution. The appendix shows the final working version of our modified
rc.sysinit script.

 11

Appendix. /etc/rc.d/rc.sysinit

--
#!/bin/bash

#/etc/rc.d/rc.sysinit - run once at boot time

Taken in part from Miquel van Smoorenburg's bcheckrc.

Rerun ourselves through initlog
if [-z "$IN_INITLOG" -a -x /sbin/initlog]; then
 exec /sbin/initlog $INITLOG_ARGS -r /etc/rc.d/rc.sysinit
fi

If we're using devfs, start devfsd now - we need the old device names
[-e /dev/.devfsd -a -x /sbin/devfsd] && /sbin/devfsd /dev

HOSTNAME=`/bin/hostname`
if [-f /etc/sysconfig/network]; then
 . /etc/sysconfig/network
else
 NETWORKING=no
fi
if [-z "$HOSTNAME" -o "$HOSTNAME" = "(none)"]; then
 HOSTNAME=localhost
fi

. /etc/init.d/functions

Start the graphical boot, if necessary
if ["$BOOTUP" = "graphical"]; then
 if [-x /usr/bin/rhgb]; then
 /usr/bin/rhgb
 else
 export BOOTUP=color
 fi
fi

last=0
for i in `LC_ALL=C grep '^[0-9]*.*respawn:/sbin/mingetty' /etc/inittab | sed 's/^.* tty\([0-9][0-
9]*\).*/\1/g'`; do
 > /dev/tty$i
 last=$i
done

 12

if [$last -gt 0]; then
 > /dev/tty$((last+1))
 > /dev/tty$((last+2))
fi

if ["`/sbin/consoletype`" = "vt" -a -x /sbin/setsysfont]; then

 echo -n "Setting default font ($SYSFONT): "
 /sbin/setsysfont
 if [$? -eq 0]; then
 success
 else
 failure
 fi
 echo ; echo
fi

Print a text banner.
echo -en $"\t\tWelcome to "
if LC_ALL=C grep -q "Red Hat" /etc/redhat-release ; then
 ["$BOOTUP" = "color"] && echo -en "\\033[0;31m"
 echo -en "Red Hat"
 ["$BOOTUP" = "color"] && echo -en "\\033[0;39m"
 PRODUCT=`sed "s/Red Hat \(.*\) release.*/\1/" /etc/redhat-release`
 echo " $PRODUCT"
else
 PRODUCT=`sed "s/ release.*//g" /etc/redhat-release`
 echo "$PRODUCT"
fi
if ["$PROMPT" != "no"]; then
 echo -en $"\t\tPress 'I' to enter interactive startup."
 echo
 sleep 1
fi

Fix console loglevel
/bin/dmesg -n $LOGLEVEL

Mount /proc (done here so volume labels can work with fsck)
action $"Mounting proc filesystem: " mount -n -t proc /proc /proc

Configure kernel parameters
action $"Configuring kernel parameters: " sysctl -e -p /etc/sysctl.conf

 13

Set the system clock.
ARC=0
SRM=0
UTC=0

if [-f /etc/sysconfig/clock]; then
 . /etc/sysconfig/clock

 # convert old style clock config to new values
 if ["${CLOCKMODE}" = "GMT"]; then
 UTC=true
 elif ["${CLOCKMODE}" = "ARC"]; then
 ARC=true
 fi
fi

CLOCKDEF=""
CLOCKFLAGS="$CLOCKFLAGS --hctosys"

case "$UTC" in
 yes|true)
 CLOCKFLAGS="$CLOCKFLAGS --utc";
 CLOCKDEF="$CLOCKDEF (utc)";
 ;;
 no|false)
 CLOCKFLAGS="$CLOCKFLAGS --localtime";
 CLOCKDEF="$CLOCKDEF (localtime)";
 ;;
esac

case "$ARC" in
 yes|true)
 CLOCKFLAGS="$CLOCKFLAGS --arc";
 CLOCKDEF="$CLOCKDEF (arc)";
 ;;
esac
case "$SRM" in
 yes|true)
 CLOCKFLAGS="$CLOCKFLAGS --srm";
 CLOCKDEF="$CLOCKDEF (srm)";
 ;;
esac

/sbin/hwclock $CLOCKFLAGS

action $"Setting clock $CLOCKDEF: `date`" date

 14

if ["`/sbin/consoletype`" = "vt" -a -x /bin/loadkeys]; then
 KEYTABLE=
 KEYMAP=
 if [-f /etc/sysconfig/console/default.kmap]; then
 KEYMAP=/etc/sysconfig/console/default.kmap
 else
 if [-f /etc/sysconfig/keyboard]; then
 . /etc/sysconfig/keyboard
 fi
 if [-n "$KEYTABLE" -a -d "/lib/kbd/keymaps"]; then
 KEYMAP=$KEYTABLE
 fi
 fi
 if [-n "$KEYMAP"]; then
 # Since this takes in/output from stdin/out, we can't use initlog
 if [-n "$KEYTABLE"]; then
 echo -n $"Loading default keymap ($KEYTABLE): "
 else
 echo -n $"Loading default keymap: "
 fi
 loadkeys $KEYMAP < /dev/tty0 > /dev/tty0 2>/dev/null && \
 success $"Loading default keymap" || failure $"Loading default keymap"
 echo
 fi
fi

Set the hostname.
action $"Setting hostname ${HOSTNAME}: " hostname ${HOSTNAME}

if [-f /fastboot] || LC_ALL=C grep -iq "fastboot" /proc/cmdline 2>/dev/null ; then
 fastboot=yes
fi

LVM initialization
if [-f /etc/lvmtab -a ! -e /proc/lvm] ; then
 modprobe lvm-mod >/dev/null 2>&1
fi
if [-e /proc/lvm -a -x /sbin/vgchange -a -f /etc/lvmtab]; then
 action $"Setting up Logical Volume Management:" /sbin/vgscan && /sbin/vgchange -a y
fi

Clear mtab
>/etc/mtab

Remove stale backups
rm -f /etc/mtab~ /etc/mtab~~

 15

The root filesystem is now read-write, so we can now log
via syslog() directly..
if [-n "$IN_INITLOG"]; then
 IN_INITLOG=
fi

if ! LC_ALL=C grep -iq nomodules /proc/cmdline 2>/dev/null && [-f /proc/ksyms]; then
 USEMODULES=y
fi

#XXX
Our modutils don't support it anymore, so we might as well remove
the preferred link.
rm -f /lib/modules/preferred /lib/modules/default
if [-x /sbin/depmod -a -n "$USEMODULES"]; then
 # If they aren't using a recent sane kernel, make a link for them
 if [! -n "`uname -r | LC_ALL=C grep -- "-"`"]; then
 ktag="`cat /proc/version`"
 mtag=`LC_ALL=C grep -l "$ktag" /lib/modules/*/.rhkmvtag 2> /dev/null`
 if [-n "$mtag"]; then
 mver=`echo $mtag | sed -e 's,/lib/modules/,,' -e 's,/.rhkmvtag,,' -e 's,[].*$,,'`
 fi
 if [-n "$mver"]; then
 ln -sf /lib/modules/$mver /lib/modules/default
 fi
 fi
 if [-L /lib/modules/default]; then
 INITLOG_ARGS= action $"Finding module dependencies: " depmod -A default
 else
 INITLOG_ARGS= action $"Finding module dependencies: " depmod -A
 fi
fi

if [-f /proc/sys/kernel/modprobe]; then
 if [-n "$USEMODULES"]; then
 sysctl -w kernel.modprobe="/sbin/modprobe" >/dev/null 2>&1
 sysctl -w kernel.hotplug="/sbin/hotplug" >/dev/null 2>&1
 else
 # We used to set this to NULL, but that causes 'failed to exec' messages"
 sysctl -w kernel.modprobe="/bin/true" >/dev/null 2>&1
 sysctl -w kernel.hotplug="/bin/true" >/dev/null 2>&1
 fi
fi

 16

Load modules (for backward compatibility with VARs)
if [-f /etc/rc.modules]; then
 /etc/rc.modules
fi

if [-x /sbin/devlabel]; then
 /sbin/devlabel restart
fi

Configure machine if necessary.
if [-f /.unconfigured]; then
 if ["$BOOTUP" = "graphical"]; then
 chvt 1
 fi

 if [-x /usr/bin/passwd]; then
 /usr/bin/passwd root
 fi
 if [-x /usr/sbin/netconfig]; then
 /usr/sbin/netconfig
 fi
 if [-x /usr/sbin/timeconfig]; then
 /usr/sbin/timeconfig
 fi
 if [-x /usr/sbin/kbdconfig]; then
 /usr/sbin/kbdconfig
 fi
 if [-x /usr/sbin/authconfig]; then
 /usr/sbin/authconfig --nostart
 fi
 if [-x /usr/sbin/ntsysv]; then
 /usr/sbin/ntsysv --level 35
 fi

 # Reread in network configuration data.
 if [-f /etc/sysconfig/network]; then
 . /etc/sysconfig/network

 # Reset the hostname.
 action $"Resetting hostname ${HOSTNAME}: " hostname ${HOSTNAME}
 fi

 rm -f /.unconfigured
fi

 17

Clean out /.
rm -f /fastboot /fsckoptions /forcefsck /.autofsck /halt /poweroff

Do we need (w|u)tmpx files? We don't set them up, but the sysadmin might...
_NEED_XFILES=
[-f /var/run/utmpx -o -f /var/log/wtmpx] && _NEED_XFILES=1

Clean up /var. I'd use find, but /usr may not be mounted.
for afile in /var/lock/* /var/run/* ; do
 if [-d "$afile"]; then
 case "`basename $afile`" in
 news|mon) ;;
 sudo)
 rm -f $afile/*/* ;;
) rm -f $afile/ ;;
 esac
 else
 rm -f $afile
 fi
done
rm -f /var/lib/rpm/__db*

Reset pam_console permissions
[-x /sbin/pam_console_apply] && /sbin/pam_console_apply -r

{
Clean up utmp/wtmp
>/var/run/utmp
touch /var/log/wtmp
chgrp utmp /var/run/utmp /var/log/wtmp
chmod 0664 /var/run/utmp /var/log/wtmp
if [-n "$_NEED_XFILES"]; then
 >/var/run/utmpx
 touch /var/log/wtmpx
 chgrp utmp /var/run/utmpx /var/log/wtmpx
 chmod 0664 /var/run/utmpx /var/log/wtmpx
fi

Delete X locks
rm -f /tmp/.X*-lock

Delete VNC & X locks
rm -rf /tmp/.X*-unix

Delete ICE locks
rm -rf /tmp/.ICE-unix

 18

Delete Postgres sockets
rm -f /tmp/.s.PGSQL.*

Initialize the serial ports.
if [-f /etc/rc.serial]; then
 . /etc/rc.serial
fi

Boot time profiles. Yes, this should be somewhere else.
if LC_ALL=C grep -q "netprofile=" /proc/cmdline ; then
 cmdline=`cat /proc/cmdline`
 for arg in $cmdline ; do
 if ["${arg##netprofile=}" != "${arg}"]; then
 [-x /usr/sbin/redhat-config-network-cmd] &&
 /usr/sbin/redhat-config-network-cmd --profile ${arg##netprofile=}
 fi
 done
fi

Generate a header that defines the boot kernel.
#/sbin/mkkerneldoth

Adjust symlinks as necessary in /boot to keep system services from
spewing messages about mismatched System maps and so on.
if [-L /boot/System.map -a -r /boot/System.map-`uname -r` -a \
 ! /boot/System.map -ef /boot/System.map-`uname -r`]; then
 ln -s -f System.map-`uname -r` /boot/System.map
fi
if [! -e /boot/System.map -a -r /boot/System.map-`uname -r`]; then
 ln -s -f System.map-`uname -r` /boot/System.map
fi

The special Red Hat kernel library symlink must point to the right library
We need to deal with cases where there is no library, and we need to
deal with any version numbers that show up.
shopt -s nullglob
for library in /lib/kernel/$(uname -r)/libredhat-kernel.so* ; do
 ln -f $library /lib/
 ldconfig -n /lib/
done
shopt -u nullglob

Now that we have all of our basic modules loaded and the kernel going,
let's dump the syslog ring somewhere so we can find it later
dmesg -s 131072 > /var/log/dmesg
(/bin/date;

 19

 /bin/uname -a;
 /bin/cat /proc/cpuinfo;
 [-r /proc/modules] && /bin/cat /proc/modules;
 [-r /proc/ksyms] && /bin/cat /proc/ksyms) >/var/log/ksyms.0
sleep 1
kill -TERM `/sbin/pidof getkey` >/dev/null 2>&1
} &
if ["$PROMPT" != "no"]; then
 /sbin/getkey i && touch /var/run/confirm
fi
wait
--

NO. OF
COPIES ORGANIZATION

 20

 1 DEFENSE TECHNICAL
 (PDF INFORMATION CTR
 ONLY) DTIC OCA
 8725 JOHN J KINGMAN RD
 STE 0944
 FORT BELVOIR VA 22060-6218

 1 US ARMY RSRCH DEV &
 ENGRG CMD
 SYSTEMS OF SYSTEMS
 INTEGRATION
 AMSRD SS T
 6000 6TH ST STE 100
 FORT BELVOIR VA 22060-5608

 1 INST FOR ADVNCD TCHNLGY
 THE UNIV OF TEXAS
 AT AUSTIN
 3925 W BRAKER LN STE 400
 AUSTIN TX 78759-5316

 1 DIRECTOR
 US ARMY RESEARCH LAB
 IMNE ALC IMS
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CI OK TL
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CS IS T
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

 1 DIR USARL
 AMSRD ARL CI OK TP (BLDG 4600)

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 21

 1 DIRECTOR FORCE DEV
 DAPR FDZ
 RM 3A522
 460 ARMY PENTAGON
 WASHINGTON DC 20310-0460

 1 US ARMY TRADOC ANL CTR
 ATRC W
 A KEINTZ
 WSMR NM 88002-5502

 1 USARL
 AMSRD ARL SL EA
 R FLORES
 WSMR NM 88002-5513

 1 USARL
 AMSRD ARL SL EI
 J NOWAK
 FORT MONMOUTH NJ 07703-5601

ABERDEEN PROVING GROUND

 1 US ARMY DEV TEST COM
 CSTE DTC TT T
 APG MD 21005-5055

 1 US ARMY EVALUATION CTR
 CSTE AEC SVE
 R BOWEN
 4120 SUSQUEHANNA AVE
 APG MD 21005-3013

 1 US ARMY EVALUATION CTR
 CSTE AEC SVE S
 R POLIMADEI
 4120 SUSQUEHANNA AVE
 APG MD 21005-3013

 1 US ARMY EVALUATION CTR
 CSTE AEC SV L
 R LAUGHMAN
 4120 SUSQUEHANNA AVE
 APG MD 21005-3013

 8 DIR USARL
 AMSRD ARL SL
 J BEILFUSS
 AMSRD ARL SL B
 M PERRY

 AMSRD ARL SL BB
 D FARENWALD
 C HUNT
 AMSRD ARL SL BE
 L ROACH
 J SHUMACHER (3 CPS)

 22

INTENTIONALLY LEFT BLANK.

